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We show that the rate of convergence towards the self-similar solution of certain lin-
earized versions of the fast diffusion equation can be related to the number of moments
of the initial datum that are equal to the moments of the self-similar solution at a fixed
time. As a consequence, we find an improved rate of convergence to self-similarity in
terms of a Fourier based distance between two solutions. The results are based on the
asymptotic equivalence of a collisional kinetic model of Boltzmann type with a linear
Fokker-Planck equation with nonconstant coefficients, and make use of methods first
applied to the reckoning of the rate of convergence towards equilibrium for the spatially
homogeneous Boltzmann equation for Maxwell molecules.
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1. INTRODUCTION

This paper concerns some aspects of the rate of convergence to equilibrium for
solutions to the Cauchy problem of the fast diffusion equation posed on the whole
space R

N

∂v

∂τ
= �vm, y ∈ R

N , τ > 0, (1.1)

v(y, 0) = v0(y), (1.2)

where N
N+2 < m < 1.
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The long time asymptotics for Eq. (1.1) is described by the family of self
similar source type Barenblatt–Pattle solutions

BC (y, τ ) = τ− 1
m+1

(
C + 1 − m

2m
|y|2τ− 2

m+1

) 1
m−1

, (1.3)

where the constant C must be chosen in order to match the initial mass. Recent
results on the subject allow to assert that the rate of convergence is sensitive to the
choice of the initial datum, and it is believed that the values of its moments play
an important role.

As a matter of fact, in the linear case described by the heat equation the rate of
convergence towards the fundamental solution is improved by fixing the center of
mass of the initial data. Moreover, one can fix a certain number of initial moments
in order to recover a higher order asymptotic approximation for the solutions
with a faster rate of convergence. (16,18) In the same linear case it has been shown
that mass-centering also speeds up the entropy decay. (13) These results suggest
the possibility of detecting a more accurate asymptotic description even in the
nonlinear case by fixing suitably a certain number of initial moments. (32)

This phenomenon was first established by J.L. Vazquez in Ref. 29 for porous
medium equations. He was able to prove that, while the support of a general
solution takes the shape of the support of its corresponding shifted Barenblatt
profile for large times, a faster convergence rate in L∞ towards such profile could
be obtained in case of solutions with radial symmetry. This convergence rate result
is valid for the fast diffusion range as well.

In the fast diffusion case, the spatial translation invariance is related to
an explicit eigenvalue of the linearization of the scaled equation in self-similar
variables. (11,14) Therefore, one expects an improvement of the rate of convergence
for the fast diffusion equation by mass-centering to the rate t−1 in L1 in the
translation dominated range, which is given by the next eigenvalue of the lin-
earization. A nearly optimal convergence rate in the fast diffusion range, based on
mass-centering, has been recently announced in Refs. 19 and 22.

For the porous medium case, mass–centering has been recently used in Ref. 6
to show that the Euclidean Wasserstein distance between two compactly supported
solutions of the one-dimensional porous medium equation having the same center
of mass decays to zero for large times with a computable rate. As a consequence,
mass-centering allows to detect an improved rate of convergence of solutions of
the one-dimensional porous medium equation towards well centered self-similar
Barenblatt profiles.

Let us denote the total mass of v0 by

M0 =
∫

RN

v0(y) dy > 0
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and its center of mass by

M1 = 1

M0

∫
RN

yv0(y) dy.

Both quantities M0 and M1 are invariant with respect to time (see Ref. 28). Hence,
mass–centering means that we choose the initial datum with the same mass and
first moment of the Barenblatt solution. Except in the linear case, however, higher
order moments of the solution do not follow the same law of evolution of the
higher order moments of a shifted in time Barenblatt profile, even if the same are
equal at time τ = 0. As far as the second moment is concerned, a recent result
establishes however an asymptotic equivalence between them. (26)

Taking into account this asymptotic equivalence, it can be reasonably conjec-
tured that information on the rate of decay in terms of moments can be obtained
by considering linear or linearized versions of Eq. (1.1). Among others, we shall
consider in the sequel a linear version of the fast diffusion Eq. (1.1),

∂v(y, τ )

∂τ
= div(m BC (y, τ )m−1∇v(y, τ )), y ∈ R

N , τ > 0, (1.4)

v(y, 0) = v0(y), (1.5)

where BC (y, τ ) is a Barenblatt solution suitably shifted in time. The rate of con-
vergence to equilibrium for Eq. (1.4) will be studied in terms of the number of
moments initially equal to thats of the Barenblatt solution.

Using the spatial-temporal scaling given in Ref. 10, the initial value problem
(1.4) can be rewritten as the initial value problem for the Fokker-Planck equation

∂ f

∂t
= div[x f + m BC (x)m−1∇ f ] x ∈ R

N , t > 0, (1.6)

f (x, t = 0) = f0(x) ≥ 0, (1.7)

where the initial value for the Fokker-Planck equation coincides with the initial
value for the fast diffusion equation ( f0 = v0). In Eq. (1.6) BC (x) is the Barenblatt
solution (1.3) evaluated at time τ = 1,

BC (x) =
(

C + 1 − m

2 m
|x |2

)− 1
1−m

. (1.8)

Direct computations show that, for any fixed mass, the Fokker-Planck Eq. (1.6)
has a unique stationary state given by (1.8).

A different linearization was first considered in Ref. 8. There, the large-time
asymptotic of linearized very fast diffusion equations with and without potential
confinements were studied, by reckoning estimates for the spectral gap and drawing
conclusions on the time decay of the solution. The results in Ref. 8 hold for
arbitrary algebraically large diffusion speeds, provided the solutions have the
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mass–conservation property. Hence, the problem we will be dealing with, was not
considered.

Likewise, this linearized fast diffusion equation was deeply investigated in
Ref. 14 by Denzler and McCann, who were able to analyze its spectrum extract-
ing sharp rates of asymptotic convergence to the Barenblatt profile. Our result
recovers this rate of convergence (see Theorem 4.2 for more details). And we
must point out, as in Ref. 14 the authors did, that in our case, although our kinetic
analysis is rigorous the linearizations are formal calculations, obtaining in this
way only conjectures for the nonlinear equation. For any given Barenblatt profile,
characterized by the exponent m, higher moments of the solution stay uniformly
bounded in time up to a critical exponent linked to the value of m. In addition
to mass and momentum conservation, due to linearity, the higher moments of the
solutions to Eq. (1.6) evolve in time in a closed form in terms of the lower order
moments. This imply that the moments corresponding to two different initial data
which are equal initially, remain equal to any subsequent time. Moreover, since the
Barenblatt profile is a steady state to Eq. (1.6), if the initial datum has moments
up some natural number n > 2 equal to thats of the Barenblatt function (1.8),
these moments remain constant in time. This property allows to compute precise
rates of convergence to the stationary state in terms of the number of moments
of the initial datum which are initially equal to thats of the equilibrium solution.
The convergence rate, of the linearized equations, will be derived in terms of a
Fourier based metric which has been proven very useful in the finding of rates of
convergence towards equilibrium in kinetic theory of rarefied gases, both in the
conservative case(17) and in nonconservative one. (2,23)

The Fourier-based metrics ds , for any s > 0, are defined as

ds( f, g) = sup
ξ∈RN

| f̂ (ξ ) − ĝ(ξ )|
|ξ |s (1.9)

for any pair of probability measures in Ps(RN ), where Ps(RN ) is the set of
probability measures with bounded s-moment and as usual, f̂ is the Fourier
transform of the density f (x),

f̂ (ξ ) =
∫

RN

f (x)e−i x ·ξ dx .

One shows that the distance is well-defined by simple Taylor expansion and finite
for any pair of probability measures with equal moments up to order [s], where
[s] denotes the integer part of s. Moreover, in case s ≥ 1 be an integer, it suffices
equality of moments up to order s − 1 for being ds finite. In this way, the initial
bounded distance in our framework means initial data with same moments of its
corresponding steady state. In fact, ds with s ≥ 2 topology is equivalent to the
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weak-star topology for measures plus convergence of moments up to order [s],
and can be related to the Wasserstein distance between probability measures. (27)

The study of the convergence in terms of this distance implies the analysis
of the evolution of it. Therefore the first tentative could be study the derivative
on time of the distance using the linearized equation in Fourier transform. But, at
least for us, it looks like not easy since we must control the term with Laplacian,
which comes from the diffusion part. Then, to overcome this problem we “invent”
a kinetic model which will be our tool to obtain convergence on Fourier metrics
for the linearizations equation of the fast diffusion equation. The key idea of our
analysis will be the reckoning of rates of decay towards equilibrium for some
kinetic equations of Boltzmann type, with a constant rate of collision. The results
obtained for the kinetic model are subsequently shown to pass to the Fokker-
Planck equation in a suitable asymptotic procedure reminiscent of the so-called
grazing collision asymptotic. In kinetic theory of rarefied gases this asymptotic
procedure became popular after the studies by C. Villani, (30,31) who established a
rigorous connection between the elastic Boltzmann equation(12) and the Landau
equation. (21) This procedure, which corresponds to concentrate collisions on the
grazing ones, namely collisions which leave velocities unaffected, allows to recover
in the limit Fokker-Planck (or more generally Landau-Fokker-Planck) equations.
Other applications to the one-dimensional dissipative Boltzmann equation can be
found in Ref. 25. In the rest of the paper we will assume the initial datum of unit
mass, zero center of mass and unit second moment∫

RN

f0 dx = 1,

∫
RN

x f0 dx = 0,

∫
RN

|x |2 f0 dx = 1. (1.10)

Since the mass and momentum are conserved in time, the solution to Eq. (1.6),
which is initially a probability density of zero mean, so remains at any subsequent
time t > 0. Our main results deal with the rate of decay to zero of solutions to
different linearizations of the fast diffusion Eq. (1.1) in terms of the d2+δ distance,
where δ = δ(m) is given in terms of the exponent m of the fast diffusion. If
Eq. (1.6) is considered, the typical result in one dimension reads

Theorem 1.1. Let f (v, t) be the solution to Eq. (1.6), with initial datum f0(v).
Suppose in addition that

d2+δ( f0, BC ) ≤ M < +∞, δ < (3m − 1)/(1 − m). (1.11)

Then, the solution f (v, t) converges exponentially to BC (x) in d2+δ–metric, and

d2+δ( f (t), BC ) ≤ d2+δ( f0, BC ) exp

{
2 + δ

2

(
1 − m

m
δ − 3m − 1

m

)
t

}
. (1.12)

Moreover, provided 3/5 < m < 1 the rate of convergence in (1.12) increases in
the interval 0 < δ ≤ (5m − 3)/(2 − 2m).
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A careful reading of Theorem 1.1 clarifies the role of moments in the rate
of convergence to equilibrium for solutions of Eq. (1.6). In fact, by definition,
the ds( f, g) distance is finite as soon as the moments of f and g are equal up
to the entire part [s] of s. Hence, while δ = 0 in Theorem 1.1 only implies that
there is mass-centering of the initial data, δ0 = (5m − 3)/(2 − 2m) ≤ 1 implies
than if at least the second moments of the initial data are equal, convergence to
equilibrium is faster than before. Note that δ0 increases as soon as m increases,
and the convergence result is better if we are close to the linear case of the heat
equation.

Instead of working on the Fokker–Planck equation directly, we will introduce
a nonlinear kinetic model of Maxwell type(4) for which the recovering of the rate
of decay in terms of the Fourier based distance is immediate. Then, the result for
the Fokker–Planck equation will follow by a well-established asymptotic analysis
recently introduced for analogous nonconservative Boltzmann equation. (23)

2. PRELIMINARY RESULTS

The main object of our analysis will be the study of the large-time asymptotic
of the solution to the Fokker–Planck equation

∂ f

∂t
= div[x f + ∇((α2 + β2|x |2) f (x))], (x ∈ R

N , t > 0), (2.1)

f (x, t = 0) = f0(x) ≥ 0. (x ∈ R
N ) (2.2)

In Eq. (2.1) the constants α and β are such that

α2 + β2 = 1

N
.

This condition implies that, if the initial datum f0(x) satisfies conditions (1.10),
so does the solution at any subsequent time t ≥ 0. It can be easily verified that
Eq. (2.1) has a steady state with overpopulated tails, given by

B∞(x) = C(α2 + β2|x |2)−1−(2β2)−1
. (2.3)

The constant C in (2.3) has to be chosen to fit unit mass. In the one-dimensional
case, Eq. (2.1), with α2 = β2 = 1/2 has been recently considered in Ref. 23 as
the grazing limit of the one-dimensional dissipative Boltzmann equation studied
in Ref. 1.

2.1. Fokker-Planck Equations as Linearization of Fast

Diffusion Equations

The linear Fokker-Planck Eq. (2.1) is strictly connected to the linearization of
the fast diffusion Eq. (1.1). Consider in fact Eq. (1.1), with initial datum (1.2). It
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is well-known that (1.1)–(1.2) can be transformed into the fast diffusion equation
with harmonic convection

∂u

∂t
= div(xu + ∇um), (x ∈ R

N , t > 0), (2.4)

u(x, t = 0) = u0(x) ≥ 0, (x ∈ R
N ). (2.5)

The transformation follows by the spatial-temporal scaling

x = y

R(τ )
, R(τ ) = ((2 − N + Nm)τ + 1)1/(2−N+Nm) (2.6)

t(τ ) = 1

2 − N + Nm
ln((2 − N + Nm)τ + 1) (2.7)

v(y, τ ) = R(τ )−N u

(
y

R(τ )
, t(τ )

)
(2.8)

Applying (2.6)–(2.8) the similarity solution of the diffusion Eq. (1.1), given by
(1.3) yields a equilibrium solution BC (x) of the Fokker–Planck equation, given by
(1.8).

It is a simple exercise to show that the scaling (2.6)–(2.7) with

v(y, τ ) = R(τ )−N f

(
y

R(τ )
, t(τ )

)
(2.9)

transforms the linear diffusion Eq. (1.4) into (1.6) and v0(x) = f0(y).
The linear Fokker–Planck Eq. (1.6) is obtained from (2.4), but other possible

linearizations can be done from (2.4) as we will show now.
The linear Fokker–Planck Eq. (1.6) is a linearization of (2.4).- We recall (2.4)

∂u

∂t
= div(xu + ∇um), (x ∈ R

N , t > 0)

and consider a state u(x, t) ≥ 0 close to the equilibrium BC (x), i.e., u − BC =
O(ε) in an appropriate topology. Thus we approximate the nonlinear term as

∇um = mum−1∇ f ≈− m Bm−1
C ∇u.

Identifying u with f , we just obtain (1.6)

∂ f

∂t
= div

[
x f + m BC (x)m−1∇ f

]
x ∈ R

N , t > 0.

Since

BC (x)m−1 = C + 1 − m

2 m
|x |2, (2.10)

one concludes with

m∇[BC (x)m−1 f ] = m BC (x)m−1∇ f + (1 − m)x f.
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Hence (1.6) can be rewritten as

∂ f

∂t
= div[mx f + m∇(BC (x)m−1 f )]. (2.11)

Other possible linearization of (2.4).- Let us set

f (x, t) = 1

1 + ε
(BC (x) + ερ(x, t)) , (2.12)

for ε > 0 small and “ρ = O(1)”. Assuming mass-conservation∫
RN

BC (x) dx =
∫

RN

f (x, t) dx = M , t ≥ 0,

we have ∫
RN

ρ(x, t) dx = M, t ≥ 0. (2.13)

Inserting (2.12) into (2.4), computing the derivative with respect to the parameter
ε and setting ε = 0 gives the linearization:

∂ρ

∂t
= div[xρ + m ∇( BC (x)m−1ρ)] x ∈ R

N , t > 0, (2.14)

ρ(x, t = 0) = ρ0(x) ≥ 0. (2.15)

with ∫
RN

ρ0 dx = M. (2.16)

Note that both linearizations (2.14) and (2.11) have the same diffusion term,
and differ only for the presence of the constant in front of the convection term.
This difference reflects into the stationary solution, which coincides with the
equilibrium Barenblatt solution (1.8) in Eq. (2.11), while for (2.14) is given by

ρ∞(x) = D B2−m
C (x) ,

where the constant D is fixed in terms of the initial mass. Due to their similar
form, both Eqs. (2.14) and (2.11) can be studied by a unified treatment.

Both linearizations of (2.4) can be written as the Fokker-Planck Eq. (2.1).- By
a simple scaling argument, one can finally show that both Eqs. (2.14) and (2.11)
fall into the form of Eq. (2.1). Hence we will focus in the large-time behavior
of solutions to this last equation, and in consequence we obtain the long-time
behavior of both linearizations of (2.1).

First of all, we consider Eq. (2.14). Using equality (2.10)

m BC (x)m−1 = mC + 1 − m

2
|x |2. (2.17)
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Note that, provided m > (N − 2)/N , the coefficient of |x |2 is less than 1/N . If
ρ(x, t) solves (2.14), let us set ρ(x, t) = δN g(δx, t), where δ is a constant to be
chosen. Then if y = δx , g(y, t) solves

∂g

∂t
= div

[
yg +∇

((
δ2mC+ 1 − m

2
|y|2

)
g(y)

)]
, (y ∈ R

N , t > 0), (2.18)

g(y, t = 0) = δ−N f0(δ−1 y) ≥ 0 (y ∈ R
N ). (2.19)

Therefore, g(y, t) satisfies Eq. (2.1) for a convenient δ in such a way that α2 + β2 =
1
N , where α2 = δ2mC and β2 = 1−m

2 . By a simple computation we show that δ

has to be chosen in the following way

0 < δ2 = 1

Cm

(
1

N
− 1 − m

2

)
. (2.20)

The same strategy applies to Eq. (2.11). The only difference is that here we have to
scale only the time. Let us set f (x, t) = h(x, mt). Then, if τ = mt , h(x, τ ) solves

∂h

∂τ
= div

[
xh + ∇

((
C + 1 − m

2m
|x |2

)
h(x)

)]
, (x ∈ R

N , τ > 0), (2.21)

h(x, τ = 0) = f0(x) ≥ 0. (x ∈ R
N ) (2.22)

In this case,

α2 = 1

N
− 1 − m

2m
; β2 = 1 − m

2m
(2.23)

Note that the bound β2 < 1/N implies m > N/(N + 2). By resorting to the def-
inition of the Fourier based distance (1.9), any result on the large-time behavior
of the distance between the solution to the Fokker–Planck Eq. (2.1) and its sta-
tionary state (2.3) can be easily translated into the corresponding result on the
large–time behavior of the distance between the solution to the Fokker–Planck
Eq. (2.14) or (2.11) and their stationary Barenblatt solutions. In fact, the relation
ρ(x, t) = δN g(δx, t) implies ĝ(ξ ) = ρ̂(δξ ), and

ds(g, B∞) = sup
ξ∈RN

|ρ̂(δξ ) − B̂∞(δξ )|
|ξ |s = |ρ̂(ξ ) − ˆρ∞(ξ )|

|ξ |s δs, (2.24)

where δ is given by (2.20). Analogous result holds for Eq. (2.11).

Remark 2.1. The previous computation emphasize a noticeable difference between
the linearized fast diffusion Eq. (2.14) and the linear one given by Eq. (2.11). In
the former case, the condition β2 < 1/N is satisfied if

m >
N − 2

N
, (2.25)
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while, in the latter case, the same condition on β holds if

m >
N

N + 2
. (2.26)

Thus, finite mass for the Barenblatt solution is enough to study the linearized
Eq. (2.14), while finite second moment for the Barenblatt profile is needed to
study the linear Eq. (2.11).

2.2. On Moments of the Barenblatt Solution

The previous analysis shows that the Fokker-Planck Eq. (2.1) contains various
linear or linearized versions of scaled fast diffusion equations. This fact depends
clearly on the structure of the steady Barenblatt solution. For the sake of complete-
ness, we shall recall in the following some of these properties. First, we recover
the relationship between the zero order moment (mass) of the Barenblatt solution
and its second one (the temperature) (see Ref. 26). Let u(x, t) be a solution to
Eq. (2.4). For any given r ∈ N ∪ {0}, let us set

Mr (t) =
∫

RN

|x |r u(x, t) dx .

Direct computations show that
d

dt
M2(t) = −2M2(t) + 2N

∫
RN

um dx, (2.27)

Since the Barenblatt is a steady solution to Eq. (2.27), its second moment M2

satisfies

M2 + 2N

∫
RN

Bm
C dx .

Using the expression of the Barenblatt solution (1.8) we find∫
RN

Bm
C dx =

∫
RN

(
C + 1 − m

2 m
|x |2

)
BC dx = CM0 + 1 − m

2 m
M2.

Hence

M2

(
N (1 − m)

m
− 2

)
+ 2NC M0 = 0,

and therefore

C M0 =
(

1

N
− 1 − m

2m

)
M2. (2.28)

If we fix the values of the moments, M0 = M2 = 1, we then obtain for C the value

C = 1

N
− 1 − m

2m
found in (2.23).
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Remark 2.2. Since both M0 and M2 are nonnegative, formula (2.28) implies the
restriction

1

N
− 1 − m

2m
> 0.

Consequently the second moment is finite if and only if m > N
N+2 .

The precise values of higher order (and bounded) moments of the Barenblatt
solution can be evaluated recursively starting from the equality

d

dt
Mn(t) = −n Mn(t) + n(n − 2 + N )

∫
RN

|x |n−2um dx, (2.29)

where 2 < n ∈ N. As before, we use the fact the Barenblatt is a steady solution to
Eq. (2.29), which implies

Mn = (n − 2 + N )
∫

RN

Bm
C dx .

We find∫
RN

|x |n−2 Bm
C dx =

∫
RN

|x |n−2

(
C + 1 − m

2m
|x |2

)
BC dx =C Mn−2 + 1 − m

2 m
Mn.

Finally, using the expression of C found in (2.23),(
1

n − 2 + N
− 1 − m

2m

)
Mn =

(
1

N
− 1 − m

2m

)
Mn−2.

This relation also gives the maximum moment of the Barenblatt solution which is
bounded. In fact, the procedure can be iterated up to the value of n for which the
coefficient of Mn is greater than zero. A further interesting property of Barenblatt
solutions is related to the scaling of variables. We used this scaling in the previous
section to normalize the constants α and β. We have

Lemma 2.3. (Relation between Barenblatt solutions) Let B a Barenblatt so-
lution with constant C and mass and energy M0 and M2 respectively. Then, if
bm−1a2 = 1, the function B̄(x) = bB(ax) is a Barenblatt solution with

M̄0 = b

aN
M0, M̄2 = b

aN+2
M2 and C̄ = bm−1 C. (2.30)

Proof: Expressions for mass and energy are direct computations. We will focus
only in proving that B̄ is really a Barenblatt solution. We have

B̄(x)m−1 = bm−1

(
C + 1 − m

2m
a2|x |2

)
= bm−1C + bm−1 1 − m

2m
a2|x |2.
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Then, since bm−1a2 = 1 the previous equality can be written as

B̄(x) =
(

bm−1C + 1 − m

2m
|x |2

) −1
1−m

. �

2.3. Remark on the Heat Equation

In order to understand the role of the Fourier based distance in the reck-
oning of the large-time behavior of the linear Fokker–Planck Eq. (2.1) we recall
briefly how this distance can be used in the case of the linear heat equation. The
result that follows is contained in Ref. 18, where it appears as a simple example
to justify application of the distance ds to the rate of convergence towards the
Gaussian density in the central limit theorem. Another application of the distance
(1.9) to the classical Fokker–Planck equation can be found in Ref. 9. These re-
sults follow in consequence of the fact that in these cases there exists an explicit
solution, which allows for exact computations. Due to its importance in applica-
tions to the linear Fokker–Planck equations, we briefly describe how this distance
works.

It is well known that a solution of the heat equation

∂u

∂t
= �u, x ∈ R

N , (2.31)

u(x, 0) = u0(x), (2.32)

where u0(x) is a probability density function satisfying conditions (1.10), behaves
asymptotically in time as the fundamental solution of (2.31), which is given by the
Gaussian density

ω2t (x) = 1√
4π t

exp

{
−|x |2

4t

}
. (2.33)

The rate of convergence, that in L2 norm is governed by t−N/2, can be improved
as soon as we have more information on the moments of the initial data. A
simple proof of this result follows by using the Fourier based distance (1.9). More
precisely, let u1 and u2 be solutions of (2.31), corresponding to initial data u0,1

and u0,2 respectively, and let s > 0 be such that ds(u0,1, u0,2) is finite . By Fourier
transform, we get for i = 1, 2

∂t ûi (t, ξ ) = −|ξ |2ûi (t, ξ ).

Solving the ordinary differential equation leads to

|û1(t, ξ ) − û2(t, ξ )|2 = exp(−2t |ξ |2)|û0,1(ξ ) − û0,2(ξ )|2.
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It follows that the L2 norm is estimated by using the Parseval equality
∫

RN

|u1(t, x) − u2(t, x)|2 dx = (2π )−N

∫
RN

|û1(t, ξ ) − û2(t, ξ )|2 dξ

= (2π )−N
∫

RN

exp(−2t |ξ |2)|û0,1(ξ ) − û0,2(ξ )|2 dξ

≤ ds(u0,1, u0,2)2 F(t).

The function of time F(t), that is equal to

F(t) = (2π )−N

∫
RN

exp(−2t |ξ |2)|ξ |2s dξ

is bounded and can be computed explicitly to give (2.34). In fact, if

C = (2π )−N
∫

RN

exp(−2|ξ |2)|ξ |2s dξ,

F(t) = Ct−(s+N/2).

Therefore, it follows that

‖(u1 − u2)(t, ·)‖2
L2(RN ) ≤ ds(u0,1, u0,2)2 Ct−(s+N/2), (2.34)

where the constant C is explicitly computable. (18) In particular, as s → 0, we
recover from (2.34) the usual t−N/2 decay rate. The decay rate in (2.34) can
be rephrased in terms of moments. Let s = m + δ, where m is an integer and
0 ≤ δ < 1. Since the Gaussian density (2.33) is a solution to the heat equation,
looking at the definition of the metric ds , if the initial datum u0(x) has the same
moments of the fundamental solution ω2(x) up to p = m, the ds-distance ds(u0, ω2)
is bounded, and the rate of convergence becomes t−(s+N/2).

As the previous example shows, one of the interesting features of the distance
(1.9) is that it can be used through interpolation to obtain convergence in stronger
spaces. This property has been discovered in Ref. 5, and subsequently used in
various applications to the dissipative Boltzmann equation. (2)

2.4. A Property of the Fourier-Based Distance

Various properties of the distance (1.9) were collected in papers, (17,27) where
the interested reader can achieve information on the relationship of this norm
to other more familiar equivalent norms used both in probability theory and in
mass transportation. For the purposes of this paper, however, further properties
are needed. We prove the following
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Lemma 2.4. Let { fn(x)}n≥0 and {gn(x)}n≥0, x ∈ R
N , be two sequences satisfying

conditions (1.10) and such that fn ⇀ f , gn ⇀ g. Suppose in addition that, for
some r > 2 ∫

Rn

|x |r fn(x) < +∞,

∫
Rn

|x |r gn(x) < +∞ (2.35)

and, in addition

dr ( fn, gn) < +∞.

Then, for all s < r ,

ds( f, g) ≤ lim inf ds( fn, gn). (2.36)

Proof: By definition, dr ( fn, gn) is bounded if all moments of order less or equal
than [r ] of fn and gn are equal. Since fn ⇀ f and gn ⇀ g, condition (2.35)
implies that, for any s < r∫

Rn

|x |s fn(x) →
∫

Rn

|x |s f (x),
∫

Rn

|x |s gn(x) →
∫

Rn

|x |s g(x). (2.37)

Thus, dr ( f, g) = D is bounded. Now, consider that

sup
ξ∈RN

| f̂ (ξ ) − ĝ(ξ )|
|ξ |s

≤ inf
n≥k

sup
ξ∈RN

| f̂n(ξ ) − ĝn(ξ ) − ( f̂ (ξ ) − ĝ(ξ ))|
|ξ |s + inf

n≥k
sup
ξ∈RN

| f̂n(ξ ) − ĝn(ξ )|
|ξ |s .

Now, from the inequality

sup
|ξ |≤δ

| f̂n(ξ ) − ĝn(ξ )|
|ξ |s ≤ sup

|ξ |≤δ

| f̂n(ξ ) − ĝn(ξ )|
|ξ |r |δ|r−s,

for any given ε > 0 there exists δ > 0 such that, for all n

sup
|ξ |≤δ

| f̂n(ξ ) − ĝn(ξ ) − ( f̂ (ξ ) − ĝ(ξ ))|
|ξ |s ≤ (C + D)|δ|r−s ≤ ε.

Likewise, there exists R > 0 such that, for all n

sup
|ξ |≥R

| f̂n(ξ ) − ĝn(ξ ) − ( f̂ (ξ ) − ĝ(ξ ))|
|ξ |s ≤ 4/Rs ≤ ε.

Thus, for any ε > 0 we can find δ and R such that

sup
ξ∈RN

| f̂n(ξ ) − ĝn(ξ ) − ( f̂ (ξ ) − ĝ(ξ ))|
|ξ |s
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≤ max

{
ε, sup

δ≤|ξ |≤R

| f̂n(ξ ) − ĝn(ξ ) − ( f̂ (ξ ) − ĝ(ξ ))|
|ξ |s

}

≤ max

{
ε, sup

δ≤|ξ |≤R

1

δs

(| f̂n(ξ ) − f̂ (ξ )| + |̂gn(ξ ) − ĝ(ξ )|)
}

. (2.38)

Now, since fn ⇀ f and gn ⇀ g we have

∀ξ, f̂n(ξ ) −→ f̂ (ξ );

and since fn satisfies conditions (1.10), |D2 f̂n(ξ )| ≤ 1 and D f̂n(0) = 0. Thus
{ f̂n}n≥0 is uniformly equi-continuous on the compact set {δ ≤ |ξ | ≤ R}. By As-
coli’s theorem, this entails that supδ≤|ξ |≤D | f̂n(ξ ) − f̂ (ξ )| goes to 0. Same conclu-
sion for the sequence gn . Finally, there exists n0 ≥ 0 such that for n ≥ n0,

max

{
ε, sup

δ≤|ξ |≤R

1

δs

(| f̂n(ξ ) − f̂ (ξ )| + |̂gn(ξ ) − ĝ(ξ )|)
}

≤ ε. (2.39)

This concludes the proof.

3. THE ONE-DIMENSIONAL FOKKER-PLANCK EQUATION

3.1. A Nonconservative Kinetic Model

This section concerns the introduction of some nonlinear kinetic model of
Boltzmann type, which is related to the Fokker–Planck Eq. (2.1) in the so-called
grazing collision limit procedure. (30,31) Similar ideas were introduced in Ref. 23 in
order to obtain information on the self-similar profile of one-dimensional nonlinear
Boltzmann equations of Maxwell type, in the case of lack of conservation of the
energy. The main advantage in working with a Boltzmann type equation relies in
the possibility to obtain in a relatively easy way the rate of decay of the Fourier
based distance.

Let us consider a binary interaction between particles governed by the law:

v∗ = v + n (λv + µw), w∗ = w + n (λw + µv); (3.1)

where (v,w) are the pre-collisional velocities which generate the post-collisional
ones (v∗, w∗). In (3.1) λ and µ are positive constants and n is a parameter which
varies in [−1, 1].

Let f (v, t) denote the distribution of particles with velocity v ∈ R at time
t ≥ 0. A kinetic model governed by binary collisions among particles can be
easily derived by standard methods of kinetic theory, considering that the change
in time of f (v, t) depends on a balance between the gain and loss of particles
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with velocity v due to collisions. This leads to the following integro-differential
equation of Boltzmann type, (23)

∂ f

∂t
=

∫ 1

−1

∫
R

Bε(n)

(
1

J
f (v∗) f (w∗) − f (v) f (w)

)
dw dn. (3.2)

In (3.2) (v∗, w∗) are the pre-collisional velocities that generate the couple (v,w)
after the interaction. J is the Jacobian of the transformation of (v,w) into (v∗, w∗),
while Bε(n) represents the collision frequency. The collision frequency depends
on a small parameter ε > 0. As ε → 0, binary collisions concentrate on collisions
which are grazing, namely the post-collision velocities are close to the pre-collision
ones. This phenomenon is well-known for the Boltzmann equation, where the
grazing limit allows to recover in the limit the Landau equation. (30,31) In what
follows, we will assume that Bε(n) satisfies the following properties:

[P.1] For all ε, Bε(n) is a symmetric function of n, so that
∫ 1
−1 Bε(n) n dn = 0

[P.2] For all ε, the second moment of Bε(n) is bounded, Aε := ∫ 1
−1 Bε(n) n2 dn .

Moreover limε→0 Aε = 1
[P.3] For any r > 2, with r ∈ N, it holds limε→0

∫ 1
−1 |n|r Bε(n) dn = 0.

The kinetic Eq. (3.2) is the analogous of the Boltzmann equation for Maxwell
molecules. (4) Also, it presents several similarities with the one-dimensional Kac
model without cut-off introduced by Desvillettes. (15) Among the possible choices
of the collision frequency, one can consider the following

Bε(n) =
⎧⎨
⎩

1

2 ε(n2 + ε4)
if n ∈ [−ε, ε],

0 otherwise.

When necessary, we will denote by fε(v, t) the solution to the initial value problem
for Eq. (3.2). In this way, we emphasize the dependence of this solution on the
ε–parameter. Moreover, without loss of generality, we can fix the nonnegative
initial density f0(v) to satisfy conditions (1.10).

Remark 3.1. At a first view, the choice of a nonnegative initial density satisfying
conditions (1.10), while quite natural for the study of a kinetic model of Boltzmann
type, appears quite restrictive at least for the study of the linearized Eq. (2.14),
where the solution is a perturbation of the Barenblatt profile, and there are no
reasons to pretend the perturbation to be positive. To clarify why it is enough
to get results on the kinetic Eq. (3.2) with nonnegative initial data, consider that
thanks to mass conservation, this equation can be rewritten as

∂ f

∂t
= Qε( f, f ) − Cε f (v), (3.3)
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where

Qε( f, f )(v) =
∫ 1

−1

∫
R

Bε(n)
1

J
f (v∗) f (w∗) dw dn, (3.4)

and

Cε =
∫ 1

−1
Bε(n) dn. (3.5)

The solution to Eq. (3.3) can be expressed as

f (v, t) = f0(v) exp {−Cε t} +
∫ t

0
Qε( f, f )(v, s) exp {−Cε(t − s)} ds. (3.6)

Of course, representation (3.6) holds independently of the sign of the initial datum
f0(v). On the other hand, in consequence of the form of the bilinear operator Qε ,

| f (v, t)| ≤ | f0(v)| exp {−Cε t} +
∫ t

0
Qε(| f |, | f |)(v, s) exp {−Cε(t − s)} ds.

(3.7)

Since the solution to the Boltzmann Eq. (3.3) is nonnegative in correspondence
to a nonnegative initial density, choosing | f0(x)| as initial density, the solution
f+(v, t) to Eq. (3.3) is nonnegative, and

f+(v, t) = | f0(v)| exp {−Cε t} +
∫ t

0
Qε( f+, f+)(v, s) exp {−Cε(t − s)} ds.

(3.8)

This implies | f (v, t)| ≤ f+(v, t). Thus, any upper bound related to the absolute
value of the solution to the Boltzmann equation with a general initial value (with no
sign!) can be derived from the same equation taking as initial value a nonnegative
density (the absolute value of the initial value).

On the other hand, since the linearized Eq. (2.14) is a linear equation the
solution can be split in positive part and negative one and solve the equation
in separated form. Then the solution is the sum of both. Namely, given a initial
data f0 we split in f0 = f0+ + f0− and we obtain the solution as f = f+ + f−.
Therefore, we can reduce us to nonnegative initial data.

3.2. A Related Conservative Kinetic Model

Thanks to the remark of the previous section, without loss of generality, in
what follows we will work with nonnegative initial values, satisfying conditions
(1.10). To avoid the presence of the Jacobian, and to study approximation to the
collision operator it is extremely convenient to write Eq. (3.2) in weak form. It
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corresponds to consider, for all smooth functions φ(v), the equation

d

dt

∫
R

φ(v) fε(v, t) dv =
∫ 1

−1

∫
R2

Bε(n) (φ(v∗) − φ(v)) fε(v) fε(w) dw dv dn,

(3.9)

One can alternatively use the symmetric form

d

dt

∫
IR

fε(v)φ(v) dv = 1

2

∫ 1

−1

∫
R2

Bε(n) fε(v) fε(w)

× (φ(v∗) + φ(w∗) − φ(v) − φ(w)) dv dw dn. (3.10)

Existence of solutions to (3.9) or, equivalently, to (3.10), can be proven by using
arguments like in Ref. 15. Evolution of moments then follows by a suitable choice
of the function φ. If φ = 1 we obtain from (3.9)

d

dt

∫
R

fε(v, t) dv = 0, (3.11)

namely mass conservation. Conservation of momentum is obtained by taking
φ(v) = v, and making use of assumption P.1. We have

d

dt

∫
R

v fε(v, t) dv =
∫ 1

−1

∫
R2

Bε(n) (n(λv + µw)) fε(v) fε(w) dw dv dn

= (λ + µ)
∫ 1

−1
Bε(n) n dn

∫
R

v fε(v) dv = 0. (3.12)

Taking finally φ(v) = v2 we obtain

d

dt

∫
R

v2 fε(v, t) dv

=
∫ 1

−1

∫
R2

Bε(n)((v + n(λv + µw))2 − v2) fε(v) fε(w) dw dv dn

=
∫ 1

−1

∫
R2

Bε(n)(n2(λv + µw)2 + 2 n v (λ v + µw)) fε(v) fε(w) dw dv dn

= (λ2 + µ2)
∫ 1

−1
Bε(n) n2 dn

∫
R

v2 fε(v) dv = (
λ2 + µ2

)
Aε

∫
R

v2 fε(v) dv.

(3.13)

Since the initial density satisfies (1.10), we obtain that the second moment is
exponentially increasing, and

M2(t) = exp{Aε(λ2 + µ2)t}. (3.14)
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Due to (3.14), it follows clearly that stationary solutions of finite energy do not
exist, and the large-time behavior of the kinetic equation can at best be described
by self-similar solutions. The standard way to look for self-similar profiles is to
scale the solution according to the role

gε(v, t) =
√

M2(t) fε(v
√

M2(t), t). (3.15)

This scaling implies that
∫

v2gε(v, t) = 1 for all t ≥ 0. Assuming φ smooth and
of bounded support, by elementary computations one concludes that gε = gε(v, t)
satisfies the equation

d

dt

∫
R

φ(v) gε(v, t) dv + (λ2 + µ2)Aε

2

∫
R

vgεφ
′(v) dv

=
∫ 1

−1

∫
R2

Bε(n) (φ(v∗) − φ(v)) gε(v) gε(w) dw dv dn. (3.16)

Let us consider a third–order Taylor expansion of φ(v∗) around v

φ(v∗) − φ(v) = φ′(v)(v∗ − v) + φ′′(v)

2
(v∗ − v)2 + φ′′′(ṽ)

3!
(v∗ − v)3

or equivalently

φ(v∗) − φ(v) = φ′(v)(n(λv + µw)) + φ′′(v)

2
n2 (λv + µw)2

+ φ′′′(ṽ)

3!
n3 (λv + µw)3,

where ṽ is a value between v and v∗. Substituting the Taylor expansion into the in-
tegral on the right-hand side of (3.16), taking the limit ε → 0 and using property
P.3 we obtain that the integral containing the third order term vanishes. More-
over, provided gε(v, t) converges to g(v, t) as ε → 0, using mass and momentum
conservation into the weak form (3.16) we obtain that g(v, t) satisfies

d

dt

∫
R

φ(v) g(v, t) dv + (λ2 + µ2)

2

∫
R

vgφ′(v) dv

=
∫

R

(λ2 v2 + µ2)

2
φ′′(v) g(v) dv, (3.17)

which is the weak formulation of the following Fokker-Planck equation

∂

∂t
g(v, t) − (λ2 + µ2)

2

∂

∂v
(vg) = ∂2

∂v2

(
(λ2 v2 + µ2)

2
g(v)

)
. (3.18)
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Since in our linearized equations the coefficient in the convection term is one we
take λ and µ such that λ2 + µ2 = 2 and therefore

∂

∂t
g = ∂

∂v
(vg) + ∂2

∂v2

((
λ2

2
v2 + µ2

2

)
g

)
. (3.19)

Note that Eq. (3.19) is nothing but the Fokker–Planck Eq. (2.1), where

β2 = λ2

2
and α2 = µ2

2
. (3.20)

The passage to the limit outlined above is largely formal. The derivation, however,
can be made rigorous by using the same arguments like in Ref. 23. Consider in
fact the class of probability densities {gε(v, t)}ε≥0. For all ε, the solution to (3.16)
satisfies conditions (1.10). By virtue of Prokhorov theorem (cfr. (20)) the existence
of a uniform bound on the second moment implies that this class is tight, so that
any sequence

{
gεn (v, t)

}
n≥0

contains an infinite subsequence which converges
weakly to some probability measure g(v, t). Therefore, the weak solution to the
Boltzmann Eq. (3.16) converges, up to extraction of a subsequence, to a probability
density g(v, t). This density is a weak solution of the Fokker-Planck Eq. (3.19).

3.3. The Evolution of Higher Moments

A detailed calculation, along the lines of Ref. 23, allows to recognize how
many moments of the solution to (3.2) remain uniformly bounded in time with
respect to ε.

Suppose that the initial density g0(v) = f0(v) is such that∫
IR

|v|2+δg0(v) dv = M2+δ < ∞. (3.21)

Then, since the contribution due to the term ∂
∂v

(vgε(v)) can be evaluated integrating
by parts, ∫

IR
|v|2+δ ∂

∂v
(vgε(v)) dv = −(2 + δ)

∫
IR

|v|2+δgε(v, t) dv,

we obtain

d

dt

∫
IR

|v|2+δgε(v, t) dv + (2 + δ)
λ2 + µ2

2
Aε

∫
IR

|v|2+δgε(v, t) dv

=
∫ 1

−1
Bε(n) dn

∫
IR2

dv dw
(|(1 + λn)v + µnw|2+δ − |v|2+δ

)
gε(v)gε(w).

(3.22)
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Let us recover a suitable upper bound for the last integral in (3.22). Given any two
constants a, b, and 0 < δ ≤ 1 the following inequality holds

(|a| + |b|)δ ≤ |a|δ + |b|δ. (3.23)

Hence, choosing a = |1 + λn||v| and b = |µn||w|,
|(1 + λn)v + µnw|2+δ ≤ ((1 + λn)v + µnw)2 (|1 + λn|δ|v|δ + |µn|δ|w|δ) .

Substituting into the right-hand side of (3.22), recalling that the mean value of g
is equal to zero, and the second moment of g equal to one, gives

∫ 1

−1
Bε(n) dn

∫
IR2

|(1 + λn)v + µnw|2+δgε(v)gε(w) dv dw

≤
∫

IR2
((1 + λn)v + µnw)2

(|1 + λn|δ|v|δ + |µn|δ|w|δ) gε(v)gε(w) dv dw

=
∫ 1

−1
Bε(n) dn

(|1 + λn|2+δ + |µn|2+δ
) ∫

IR
|v|2+δgε(v) dv

+
∫ 1

−1
Bε(n) dn

(|1 + λn|2|µn|δ + |µn|2|1 + λn|δ)
∫

IR
|v|δgε(v) dv.

Grouping all these inequalities, we obtain

d

dt

∫
IR

|v|2+δgε(v, t) dv ≤ Sε(δ)
∫

IR
|v|2+δgε(v, t) dv + Dδ, (3.24)

where

Sε(δ) =
∫ 1

−1
Bε(n) dn

(|1 + λn|2+δ + |µn|2+δ − 1
) − (2 + δ)

λ2 + µ2

2
Aε,

(3.25)

and, by Hölder inequality

Dδ ≤
∫ 1

−1
Bε(n) dn(|1 + λn|2|µn|δ + |µn|2|1 + λn|δ). (3.26)

By property P3 it follows that Dδ is uniformly bounded with respect to ε. On the
other hand, using a Taylor development up to the order three we obtain

|1 + λ n|2+δ = 1 + (2 + δ)λn + (2 + δ)(1 + δ)

2
λ2n2 + O(n3). (3.27)

Substituting into (3.25) we obtain

Sε = 2 + δ

2
(λ2δ − µ2)Aε + 0(ε). (3.28)
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Hence, Sε ≤ 0 as soon as λ2δ − µ2 < 0 and ε is suitably small. In this case,
inequality (3.24) gives an upper bound for the moment, that reads∫

IR
|v|2+δgε(v, t) dv ≤ M2+δ + Dδ

|Sε(δ)| < ∞. (3.29)

Let us set δ̄ = µ2/λ2. In the case δ̄ > 3 we can easily iterate our procedure to obtain
that any moment of order 2 + δ, with δ < δ̄ which is bounded initially, remains
uniformly bounded with respect to ε at any subsequent time. The only difference
now is that the explicit expression of the bound is more and more involved. We
proved

Lemma 3.2. Let gε(v, t) be the solution to the initial value problem for the
kinetic Eq. (3.16), where the initial datum g0(v) satisfies∫

IR
|v|2+δg0(v) dv = M2+δ < ∞. (3.30)

Then, if δ < δ̄ = µ2/λ2, ∫
IR

|v|2+δgε(v, t) dv (3.31)

is uniformly bounded in time for all ε. Moreover, if δ < δ̄ the function Sε defined
by (3.25) satisfies

lim
ε→0

Sε(δ) < 0. (3.32)

3.4. Rate of Convergence in Fourier Based Metrics

Let M0 denote the space of all probability measures in R and

Mr =
{
µ ∈ M0 :

∫
R

|v|rµ(dv) < ∞, r ≥ 0

}

the space of all Borel probability measures with finite momentum of order r
equipped with the topology of the weak convergence of the measures. By a weak
solution of the initial value problem for Eq. (3.2), corresponding to the initial
probability density f0(w) ∈ Mr r > 2 we shall mean any probability density
f ∈ C1(R,Mr ) satisfying the weak form of the Eq. (3.9) for t > 0 and all smooth
functions φ, and such that for all φ

lim
t→0

∫
IR

φ(v) f (v, t) dv =
∫

IR
φ(v) f0(v) dv. (3.33)

In the rest of this section, we shall study the weak form of Eq. (3.2), with the
normalization conditions (1.10). It is equivalent to use the Fourier transform of
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the Eq. (4):

∂ f̂ (ξ, t)

∂t
= Q̂( f̂ , f̂ )(ξ, t), (3.34)

where f̂ (ξ, t) is the Fourier transform of f (v, t) and

Q̂( f̂ , f̂ )(ξ ) =
∫ 1

−1
Bε(n)[ f̂ (ξ (1 + λ n), t) f̂ (nµξ, t) − f̂ (ξ, t)] dn. (3.35)

The initial conditions (1.10) turn into

f̂ (0) = 1, f̂ ′(0) = 0, f̂ ′′(0) = −1,

where f̂0 ∈ C2(R). Hence Eq. (3.34) can be rewritten (recall (3.5)) as

∂ f̂ (ξ, t)

∂t
+ Cε f̂ (ξ, t) =

∫ 1

−1
Bε(n) f̂ (ξ (1 + λ n), t) f̂ (n µξ, t) dn. (3.36)

We work with the metric introduced in(17)

ds( f, g) = sup
ξ∈R

| f̂ (ξ ) − ĝ(ξ )|
|ξ |s . (3.37)

It is easy to show that (see Refs. 23 and 24), for any given collision integral of
form (3.35), given two initial densities f0,1 and f0,2 belonging to Mr , r > 2, and
such that dr ( f0,1, f0,2) is bounded, dr ( f1(t), f2(t)) is bounded at any subsequent
time t > 0, and the following inequality holds

dr ( f1(t), f2(t)) ≤ dr ( f0,1, f0,2) · exp

{(∫ 1

−1
Bε(n) [|1+λ n|r + (µ n)r −1] dn

)
t

}
.

(3.38)

Inequality (3.38) implies a similar inequality for the scaled function g, which we
recall is defined through the scaling g(v, t) = √

M2(t) f (v
√

M2(t), t). The Fourier
transform of g is ĝ(ξ ) = f̂ (ξ/

√
M2(t)). From the definition of dr it follows

dr (g1(t), g2(t)) =
(

1√
M2(t)

)r

dr ( f1(t), f2(t)).

Therefore

dr (g1(t), g2(t)) ≤ dr (g0,1, g0,2)

· exp

{(∫ 1

−1
Bε(n)

[
|1 + λ n|r + |µ n|r −1− r

2
n2(λ2 + µ2)

]
dn

)
t

}
. (3.39)

The exponent in (3.39) coincides with the function Sε(·) defined in (3.25), and
evaluated at δ = r − 2.
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Applying Lemma 2.4, and taking the limit ε → 0 on (3.39) and calling again
g the solution, for all δ < r − 2 we find that the solution to the Fokker-Planck
Eq. (3.18) satisfies

d2+δ(g1(t), g2(t)) ≤ d2+δ(g0,1, g0,2) exp

{
2 + δ

2
(λ2δ − µ2)t

}
. (3.40)

The exact rate of convergence in δ-metric follows by analyzing the parabola
h(δ) = 2+δ

2 (λ2δ − µ2), that is nonpositive in the interval δ ∈ [0, δ̄ = µ2/λ2].
The minimum value in this interval is achieved at δ0 = δ̄/2 − 1 where h(δ0) =
− 1

8 (µ2 + 2λ2). Thus, if δ0 > 0, in the interval δ ∈ [0, δ0] the rate of convergence
in d2+δ–metric is increasing, and we have a gain in the rate of convergence if the
initial data have a big number of equal moments. Now, δ0 > 0 if µ2 > 2λ2, or,
what is the same (see (3.20)),

α2 = µ2

2
> 2β2 = 2λ2

2
. (3.41)

This implies that we have an improved rate of convergence in d2+δ–metric for
Eq. (2.18) in the range 1/3 < m < 1, while the same holds for Eq. (2.21) in the
range 3/5 < m < 1. We include these results into the following.

Theorem 3.3. Let f (v, t) be the solution to Eq. (2.14), corresponding to the
initial datum f0(v) satisfying (1.10). Suppose in addition that

d2+δ

(
f0, D B2−m

C

)
< +∞, δ < (1 + m)/(1 − m). (3.42)

Then, the solution f (v, t) converges exponentially to BC (v)2−m in d2+δ–metric,
and

d2+δ

(
f (t), D B2−m

C

) ≤ d2+δ

(
f0, D B2−m

C

)
exp

{
2 + δ

2
((1 − m)δ − (1 + m)) t

}
.

(3.43)

Moreover, provided 1/3 < m < 1 the rate of convergence in (3.43) increases in
the interval 0 < δ ≤ (3m − 1)/(2 − 2m). Likewise, let f (v, t) be the solution to
Eq. (1.6), with initial datum f0(v). Suppose in addition that

d2+δ( f0, BC ) < +∞, δ < (3m − 1)/(1 − m). (3.44)

Then, the solution f (v, t) converges exponentially to BC (x) in d2+δ–metric, and

d2+δ( f (t), BC ) ≤ d2+δ( f0, BC ) exp

{
2 + δ

2

(
1 − m

m
δ − 3m − 1

m

)
t

}
. (3.45)

Moreover, provided 3/5 < m < 1 the rate of convergence in (3.45) increases in
the interval 0 < δ ≤ (5m − 3)/(2 − 2m).
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Proof: The proof of this theorem is a direct consequence of the previous com-
putations and we can obtain it by identification of coefficients, as follows. First
of all, we recall that both linear equations ((2.14) and (1.6)) can be written using
different scaling as Eq. (2.1) (see Sec. 2.1). For Eq. (2.14) we have

α2 = µ2

2
= 1 + m

2
and β2 = λ2

2
= 1 − m

2

thus (3.41) holds if and only if m > 1/3. On the other hand, since

µ2 = 1 + m and λ2 = 1 − m

we obtain that the rate of convergence 2+δ
2 (λ2 δ − µ2) is written as

2 + δ

2
((1 − m) δ − (1 + m)) .

And the minimum value is achieved in δ0 = 3m−1
2−2m (see previous computations)

and this value is

− 1

23

(3 − m)2

1 − m
.

For Eq. (1.6) we have

α2 = µ2

2
= 3m − 1

2m
and β2 = λ2

2
= 1 − m

2m

and in this case (3.41) holds if and only if m > 3/5 and the rate of convergence is
written as

2 + δ

2

(
1 − m

2m
δ − 3m − 1

2m

)
.

And the minimum value is achieved in δ0 = 5m−3
2−2m (see previous computations)

and this value is

− 1

23

(m + 1)2

m
.

�

The result of Theorem 3.3 introduces new bounds into the game. As a matter
of fact, while our method of proof improves the rate of convergence in both cases
as soon as we are sufficiently close from the linear heat equation, while we are not
able to show convergence to equilibrium as soon as we are too far from the linear
one.
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4. THE N-DIMENSIONAL FOKKER–PLANCK EQUATION

The results of Sec. 3 clarify the strategy we used to reckon precise rates
of convergence towards the steady state for the one-dimensional Fokker–Planck
Eq. (2.4). In one dimension of the velocity variable the connection between non-
conservative models of the Boltzmann equation and the Fokker–Planck equation
with non constant diffusion coefficients was known for binary collisions of dif-
ferent type. (23) To our knowledge, however, in higher dimensions, at present no
studies on this connection have been considered so far. Clearly, higher dimen-
sional models have been studied in the grazing limit in the conservative case by
Villani, (30,31) but there, starting from the nonlinear Boltzmann equation with elas-
tic collisions, the limit equation results in the nonlinear Landau equation. To
obtain in the limit a linear Fokker-Planck type equation requires the introduction
of a particular collision dynamics. We deal with this extension in the forthcoming
Section. Since many arguments will be taken from the one-dimensional analysis
of Sec. 3, when not necessary to the understanding, we will only briefly outline
them.

4.1. N-Dimensional Binary Collisions and Nonconservative

Kinetic Models

The starting point of our analysis will be the introduction of a particu-
lar collision dynamics, that in the grazing limit is able to produce the target
Eq. (2.4). Clearly, as the one-dimensional analysis suggests, this is not the only
possible model of binary collision that produces the correct result. Neverthe-
less, this law is in our opinion the best possible generalization of (3.1) to higher
dimensions. The binary interaction between particles will be governed by the
law:

v∗ = v + n (λ e · v + µ e · w), w∗ = w + n (λ e · w + µ e · v). (4.1)

In (4.1) (v,w) ∈ R
2N are the pre-collisional velocities which generate the post-

collisional ones (v∗, w∗) ∈ R
2N , λ and µ are positive constants, n ∈ [−1, 1]N

and e ∈ R
N is a unit vector. Consequently, the integro-differential equation of

Boltzmann type (3.2) is written as

∂ f

∂t
=

∫
CN

∫
SN−1

∫
RN

Bε(n)

BN

(
1

J
f (v∗) f (w∗) − f (v) f (w)

)
dw de dn (4.2)

where (v∗, w∗) are the pre-collisional velocities that generate the couple (v,w)
after the interaction, J is the Jacobian of the transformation of (v,w) into (v∗, w∗),
CN denotes the cube in R

N centered on the origin with dimensions [−1, 1]N , SN−1

represents the unit sphere in R
N , BN is the measure of the surface of SN−1 and

Bε(n) represents the collision frequency. Proceeding as in dimension one, we will
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assume that Bε(n) satisfies the following properties:

PN.1 For all ε, Bε(n) is a symmetric function of all the components of n, so that

for all i

∫
CN

Bε(n) ni dn = 0, for all i �= j ,
∫

CN

Bε(n) ni n j dn = 0

PN.2 For all ε, the second moment of Bε(n) is bounded,

Aε :=
∫

CN

Bε(n) |n|2 dn < ∞. Moreover limε→0 Aε = 1.

PN.3 For any r > 2, with r ∈ N, it holds limε→0

∫
CN

|n|r Bε(n) dn = 0.

The weak formulation of (4.2) now reads

d

dt

∫
RN

fε(v)φ(v) dv = 1

2

∫
CN

∫
SN−1

∫
R2N

Bε(n)

BN
fε(v) fε(w)

× (φ(v∗) + φ(w∗) − φ(v) − φ(w)) dv dw de dn. (4.3)

Conservation of mass follows directly considering φ(v) = 1 and using PN.1. Like-
wise, conservation of momentum follows by taking φ(v) = v and using PN.1
again. The evaluation of the law of variation of the second momentum requires
computations that we present below. Precisely we obtain

Lemma 4.1. Let fε be a solution of (4.2) corresponding to an initial value satis-
fying conditions (1.10). Then the moment of order two is exponentially increasing
and it holds

M2(t) = exp

{
Aε(λ2 + µ2)

N
t

}
. (4.4)

Proof: Choosing φ(v) = |v|2 into the weak form (4.3) we find

d

dt

∫
RN

fε(v)|v|2 dv = 1

2

∫
CN

∫
SN−1

∫
R2N

Bε(n)

BN
fε(v) fε(w)

× (|v∗|2 + |w∗|2 − |v|2 − |w|2) dv dw de dn.

By the collision rule (4.1) we obtain

d

dt

∫
RN

fε(v)|v|2 dv =
∫

CN

∫
SN−1

∫
R2N

Bε(n)

BN
fε(v) fε(w)

× (|n|2 |λe · v + µe · w|2 + 2 (λe · v + µe · w) v · n) dv dw de dn.

By property PN.1 follows∫
CN

∫
SN−1

∫
R2N

Bε(n)

BN
fε(v) fε(w) (λe · v + µe · w) v · n dv dw de dn = 0.
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Therefore,

d

dt

∫
RN

fε(v)|v|2 dv =
∫

CN

∫
SN−1

∫
R2N

Bε(n)

BN
fε(v) fε(w)

· |n|2 |λe · v + µe · w|2 dv dw de dn,

which can be written as

d

dt

∫
RN

fε(v)|v|2 dv =
∫

CN

∫
SN−1

∫
R2N

Bε(n)

BN
fε(v) fε(w)

× |n|2(λ2(e · v)2 + µ2(e · w)2

+ 2λµ (e · v) (e · w)) dv dw de dn.

Finally, since mass and momentum are conserved, we obtain

d

dt

∫
RN

fε(v)|v|2 dv =
∫

CN

∫
SN−1

∫
R2N

Bε(n)

BN
fε(v) fε(w)

× |n|2(λ2(e · v)2 + µ2(e · w)2) dv dw de dn

= (λ2 + µ2)
∫

CN

∫
SN−1

∫
RN

Bε(n)

BN
fε(v)|n|2(e · v)2dv de dn

= Aε(λ2 + µ2)

N

∫
RN

fε(v)|v|2dv.

The last equality follows by symmetry, since from the equality

1

BN

∫
SN−1

e2
i de = 1

BN

∫
SN−1

e2
j de, i �= j (4.5)

it follows

1

BN

∫
SN−1

e2
i de = 1

N
i = 1, . . . n,

and

1

BN

∫
SN−1

(e · v)2 de = 1

N
|v|2.

�

As discussed in the one-dimensional case, the exponential growth of the
second moment implies that do not exist stationary solutions with finite energy.
To look for self-similar profiles, we scale the solution according to

gε(v, t) = (M2(t))N/2 fε(v
√

M2(t), t). (4.6)
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By this scaling, we obtain that the second moment of gε remains equal to one
(for all t ≥ 0). Thus, if the initial value to the kinetic Eq. (4.2) satisfies condition
(1.10), so does gε(v, t) at any subsequent time. The weak formulation of Eq. (4.2)
for the scaled function gε is written as

d

dt

∫
RN

φ(v) gε(v, t) dv + (λ2 + µ2)Aε

2 N

∫
RN

∇φ · vgε dv

=
∫

CN

∫
SN−1

∫
R2 N

Bε(n)

BN
(φ(v∗) − φ(v)) gε(v) gε(w) dw dv de dn. (4.7)

If we consider a third-order Taylor development of φ(v∗) around v we obtain

φ(v∗) − φ(v) = ∇vφ(v) · (v∗ − v) + 1

2
(v∗ − v) Hess(φ)(v) (v∗ − v)t

+ R(φ, ṽ, v∗, v)

where we denoted by Hess the Hessian matrix of a function, and by wt the transpose
of a vector w. Moreover R represents the remainder evaluated in correspondence to
a vector ṽ = λv + (1 − λ)v∗, where λ is a suitable constant, 0 ≤ λ ≤ 1. Resorting
to the expression of v∗ in terms of v we find

φ(v∗) − φ(v) = ∇vφ(v) · n (λe · v + µe · w)

+ 1

2
n (λe · v + µe · w) Hess(φ)(v) (n (λe · v + µe · w))t

+ R(φ, ṽ, v∗, v).

Substituting the above expression into (4.7), and owing to property PN.3 shows that
the term corresponding to the remainder vanishes when ε goes to zero. Therefore,
we will focus on the remaining two terms. The integral corresponding to the first
term in the Taylor expansion vanishes thanks to property PN.1. In fact∫

CN

∫
SN−1

∫
R2 N

Bε(n)

BN
∇vφ(v) · n (λe · v + µe · w) gε(v) gε(w) dw dv de dn

=
∫

SN−1

∫
R2 N

1

BN
∇vφ(v) ·

(∫
CN

Bε(n) n dn

)
(λe · v + µe · w)

× gε(v) gε(w) dw dv de = 0.

On the other hand, by property PN.1 the second term can we written as follow

1

2

∫
CN

∫
SN−1

∫
R2 N

Bε(n)

BN
gε(v) gε(w)n (λ e · v + µ e · w)

× Hess(gε)(v) (n (λ e · v + µ e · w))t dw dv de dn
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= 1

2

∫
SN−1

∫
R2 N

1

BN
gε(v) gε(w)

(∑
i

∂2φ(v)

∂v2
i

∫
CN

Bε(n)n2
i dn

)

× (λe · v + µe · w)2 dw dv de

= 1

2

∫
SN−1

∫
R2 N

1

BN
gε(v) gε(w)

(∑
i

∂2φ(v)

∂v2
i

Aε

N

)

× (λ2(e · v)2 + µ2(e · w)2 + 2 λµ (e · v) (e · w)) dw dv de

= Aε

2N BN

∫
SN−1

∫
R2 N

gε(v) gε(w) �φ(v)

× (λ2(e · v)2 + µ2(e · w)2 + 2 λµ (e · v) (e · w)) dw dv de

= Aε

2N BN

∫
SN−1

∫
R2 N

gε(v) gε(w) �φ(v)(λ2(e · v)2 + µ2(e · w)2) dw dv de

= Aε

2N 2

∫
R2 N

gε(v) gε(w) �φ(v)(λ2|v|2 + µ2|w|2) dw dv

= Aε

2N 2

∫
RN

gε(v) �φ(v)(λ2|v|2 + µ2) dv.

Therefore, collecting terms, and taking the limit ε → 0 we find that the limit
function g(v, t) satisfies the equation (in weak form)

d

dt

∫
RN

φ(v) g(v, t) dv + (λ2 + µ2)Aε

2 N

∫
RN

∇φ(v) · vg dv

= Aε

2N 2

∫
RN

�φ g(v)(λ2|v|2 + µ2) dv, (4.8)

which is the weak formulation of the following Fokker-Planck equation

∂

∂t
g(v, t) − (λ2 + µ2)

2N
div(vg) = �

(
λ2 v2 + µ2

2N 2
g(v)

)
. (4.9)

As in the 1-dimensional case the coefficient in the convection term must to be one
since we consider λ2 + µ2 = 2N and therefore

∂

∂t
g(v, t) = div(vg) + �

[(
λ2

2N 2
v2 + µ2

2N 2

)
g(v)

]
. (4.10)

Again, as in the one dimensional case, it follows that the limit function g(v, t)
satisfies the Fokker-Planck Eq. (2.1), by taking

α2 = µ2

2N 2
and β2 = λ2

2N 2



Linearized Fast Diffusion Equations 913

which satisfy α2 + β2 = 1/N . We can now repeat the reasoning we did in one-
dimension of space, to conclude that the sequence {gε(v, t)}ε≥0 contains a subse-
quence that converges weakly to a function g satisfying (4.8).

4.2. Convergence in Fourier Based Metrics

We use the same notation as in one dimensional case and we denote by M0

the space of all probability measures in R
N and

Mr =
{
µ ∈ M0 :

∫
RN

|v|rµ(dv) < ∞, r ≥ 0

}

the space of all Borel probability measures with finite momentum of order r
equipped with the topology of the weak convergence of the measures. A weak
solution of the initial value problem for Eq. (4.2), corresponding to the initial
probability density f0(w) ∈ Mr , r > 2 we shall mean any probability density
f ∈ C1(RN ,Mr ) satisfying the weak form of the Eq. (4.3) for t > 0 and all
smooth functions φ, and such that for all φ

lim
t→0

∫
IR

φ(v) f (v, t) dv =
∫

IR
φ(v) f0(v) dv. (4.11)

In the rest of this section, we shall study the weak form of Eq. (4.2), with the
normalization conditions (1.10). It is equivalent to use the Fourier transform of
the equation(4):

∂ f̂ (ξ, t)

∂t
= Q̂

(
f̂ , f̂

)
(ξ, t), (4.12)

where

Q̂
(

f̂ , f̂
)

(ξ )

=
∫

CN

∫
SN−1

Bε(n)

BN

[
f̂ (ξ + (n · ξ )λe, t) f̂ ((n · ξ ) µe, t) − f̂ (ξ, t)

]
de dn

×
∫

CN

∫
SN−1

Bε(n)

BN
f̂ (ξ + (n · ξ )λe, t) f̂ ((n · ξ ) µe, t) de dn − C N

ε f̂ (ξ, t)

(4.13)

where

C N
ε =

∫
CN

Bε(n) dn.

In the N -dimensional case, the initial conditions (1.10) take the form

f̂0(ξ = 0) = 1, ∇ f̂0(ξ = 0) = 0, � f̂0(ξ = 0) = −1,

where f̂0 ∈ C2(RN ).
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Then, proceeding as in the one-dimensional case, (17) given two initial data
f0,1 and f0,2 such that dr ( f0,1, f0,2) is bounded for some r ≥ 2, one obtains for
the corresponding solutions to ((4.3)) the estimate

dr ( f1(t), f2(t)) ≤ dr ( f0,1, f0,2) · exp
{

Rε
N (r ) t

}
(4.14)

where

Rε
N (r ) =

∫
CN

∫
SN−1

Bε(n)

BN
[|γ + (n · γ )λe|r + |(n · γ )µe|r − 1] de dn,

and we denote with γ = ξ/|ξ | a unit vector. The estimation (4.14) is translated
to the analogous estimation for the scaled function gε . As in the one-dimensional
case

dr (gε1 (t), gε2 (t)) = M2(t)−r/2 dr ( f1(t), f2(t)) ≤ dr ( f0,1, f0,2) · exp
{

Rε
N (r ) t

}
or equivalently, since dr ( f0,1, f0,2) = dr (g0,1, g0,2)

dr (gε1 (t), gε2 (t)) = M2(t)−r/2 dr ( f1(t), f2(t)) ≤ dr (gε01
, gε02

) · exp
{

Sε
N (r ) t

}
(4.15)

where now

Sε
N (r ) =

∫
CN

∫
SN−1

Bε(n)

BN

·
[
|γ + (n · γ )λ e|r + |(n · γ )µ e|r − 1 − r

2 N
n2

(
λ2 + µ2

)]
de dn. (4.16)

In order to pass to the limit ε → 0 we use a Taylor development for the function
h(v) = |v|2+δ with v ∈ R

N ,

h(v) = h(v0) + ∇vh(v0) · (v − v0) + 1

2
(v − v0) Hess(h)(v0) (v − v0)t

+ R(h, ṽ, v0, v)

Since v = γ + (n · γ )λe and v0 = (n · γ )λe,we use properties PN.1 − PN.3 and
(4.5) into (4.16) to obtain

Sε
N (2 + δ) = λ2

2

1

N
Aε(2 + δ) δ

1

N
+ λ2

2N
Aε (2 + δ) − Aε

2 + δ

2 N

(
λ2 + µ2

)

+ O(n2+δ).

Taking the limit ε → 0 we find

SN (2 + δ) = 2 + δ

2 N

[
δ

N
λ2 − µ2

]
.



Linearized Fast Diffusion Equations 915

Therefore, using Lemma 2.4 we obtain for the limit function g the following
inequality

d2+δ(g1(t), g2(t)) ≤ d2+δ(g01, g02 ) · exp {SN (2 + δ) t} , (4.17)

which can be rewritten in terms of the general Fokker-Planck Eq. (2.1) for the
stationary solution and a general solution as

d2+δ( f (t), B∞) ≤ d2+δ( f0, B∞) · exp
{
2(2 + δ)

(
δβ2 − 2Nα2

)
t
}
. (4.18)

We are now in a position to prove the main result of this Section, namely the
N -dimensional version of Theorem 3.3. We can observe that for the linearized Eq.
(2.14) also considered in Ref. 14 we obtain the same rate of convergence taking
δ = 0.

Theorem 4.2. Let f (v, t) be the solution to Eq. (2.14), corresponding to the ini-
tial datum f0(v) satisfying (1.10), and let us denote by B̄ = D B2−m

C the stationary
solution to the same equation. Suppose in addition that

d2+δ( f0, B̄) < +∞, δ < (2 − N + Nm)/(1 − m). (4.19)

Then, the solution f (v, t) converges exponentially to B̄ in d2+δ–metric, and

d2+δ( f (t), B̄) ≤ d2+δ( f0, B̄) exp

{
2 + δ

2
((1 − m)δ − (2 − N + N m)) t

}
.

(4.20)

Moreover, provided N
N+2 < m < 1 the rate of convergence in (4.20) increases

in the interval 0 < δ ≤ ((N + 2) m − N )/(2 − 2m). Likewise, let f (v, t) be the
solution to Eq. (1.6), with initial datum f0(v). Suppose in addition that

d2+δ( f0, BC ) < +∞, δ < (m(N + 2) − N )/(1 − m). (4.21)

Then, the solution f (v, t) converges exponentially to BC (x) in d2+δ–metric, and

d2+δ( f (t), BC ) ≤ d2+δ( f0, BC ) exp

{
2 + δ

2 N

(
1 − m

m
δ − (2 + N ) m − N

m

)
t

}
.

(4.22)

Moreover, provided (N + 2)/(N + 4) < m < 1 the rate of convergence in (4.22)
increases in the interval 0 < δ ≤ (N+4) m−(N+2)

2−2m .

Proof: The proof of this theorem is an easy generalization of the 1-dimensional
case and we can obtain it simply by identifying coefficients, since in Sec. 2.1 we
showed that both linear equations ((2.14) and (1.6)) can be written, using different
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scaling, as Eq. (2.1). For Eq. (2.14) we have

α2 = µ2

2N 2
= 1

N
− 1 − m

2
and β2 = λ2

2N 2
= 1 − m

2
.

SN (2 + δ) is nonpositive if and only if δ ≤ N µ2

λ2 . And the minimum value is

achieved at δ0 = Nµ2

2λ2 − 1 which is positive if and only if Nµ2 > 2λ2 or equiva-
lently if and only if Nα2 > 2β2 (analogous N-dimensional version of (3.41)). And
finally, this inequality holds if and only if m > N

N+2 . On the other hand, since

µ2 = 2N
2 − N + Nm

2
and λ2 = 2N 2 1 − m

2

we obtain that the rate of convergence 2+δ
2 N ( λ2

N δ − µ2) is written as

2 + δ

2
((1 − m) δ − (2 − N + Nm)).

The minimum value is achieved at δ0 = (2+N )m−N
2−2m (see previous computations)

and this value is

− 1

23

(4 − N + (N − 2)m)2

1 − m
.

For Eq. (1.6) we have

α2 = µ2

2N 2
= 1

N
− 1 − m

2m
and β2 = λ2

2N 2
= 1 − m

2m

and in this case Nα2 > 2β2 holds if and only if m > (N + 2)/(N + 4) and the
rate of convergence is written as

2 + δ

2 N

(
1 − m

m
δ − (2 + N ) m − N

m

)
.

The minimum value is now achieved in δ0 = (N+4) m−(N+2)
2−2m and this value is

− 1

23

((2 − N ) + N m)2

N m
.

Remark 4.3. For the Eq. (2.14) δ < 1 (which means only equality for the initial
mass) if

N − 2

N
< m <

N − 1

N + 1
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and δo < 1 (which means equality of the second moments) if

N

N + 2
< m <

2 + N

N + 4
.

While for (1.6) δ < 1 if

N

N + 2
< m <

N + 1

N + 3

and δo < 1 if

N + 2

N + 4
< m <

N + 4

N + 6
.

Some comments to Theorem 4.2 are needed. Despite the one-dimensional
situation, the boundedness of the Fourier based metric for s > 2 requires that
all the cross moments of both the initial value f0 and the stationary state are
equal up to [s], where [s] is the entire part of the number s. When s > 2, this
condition reads very strong. Thus, the conditions of Theorem 4.2 are equiv-
alent to thats of Theorem 3.3 only for radially symmetric initial data, which,
as it can be easily seen looking at the kinetic model, imply that the solution
is radially symmetric at any subsequent time. In this case, in fact, only the
principal moments of both the initial value and the stationary state need to be
equal.

In the general situation, however, it has been shown first for the elastic spatially
homogeneous Boltzmann equation for Maxwell molecules, (17) and subsequently
for the inelastic Boltzmann equation for Maxwell type interactions, (3) that the
explicitly computable and fast decay to zero of the cross moments can be used to
relax the condition of Theorem 4.2 to all the initial data satisfying (1.10). We will
outline this strategy in the next section.

Second, as shown in paper (5) for the elastic spatially homogeneous Boltz-
mann equation for Maxwell molecules, the decay of the Fourier metric, combined
with the uniform boundedness of stronger norms, gives rise to precise rates of
convergence towards the stationary state in these strong norms. This idea has
been recently applied to the spatially uniform Boltzmann equation for inelastic
Maxwell model in presence of a thermal bath in Ref 2. In the purely inelastic
setting, however, the lack of an entropy principle, makes it difficult to extend the
results of Ref. 5 to this case. (3) In the next Section we will give indications on a
possible way to obtain decay rates in stronger norm for the target Fokker-Planck
equations.
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5. RATE OF CONVERGENCE FOR GENERAL INITIAL VALUES

5.1. Propagation of Regularity

The goal of this section is to show that the smoothness of the initial data of the
Fokker-Planck Eq. (2.1) is propagated, so that we have bounds on the smoothness
uniform in time. This result, combined with suitable interpolation inequalities (5)

can be used to obtain convergence in stronger space with almost the same rate
of convergence of the metric d2. This strategy has been recently applied to the
dissipative Boltzmann equation in a thermal bath in Ref. 2.

After application of the Fourier transform, the Fokker-Planck Eq. (2.1) takes
the form

∂ f̂

∂t
= −ξ · ∇ξ f̂ − α2|ξ |2 f̂ + β2 |ξ |2 �ξ f̂ . (5.23)

To simplify computations, thanks to linearity, we can consider separately the real
and imaginary parts of f̂ (ξ ), f̂ (ξ ) = a(ξ ) + ib(ξ ). Both the functions a and b
then satisfy the same Eq. (5.23). In the following we argument for a but clearly
the same holds for b. Multiplying the Eq. (5.23) satisfied by the real part a(ξ ) by
2 |ξ |2ka one has

∂a2

∂t
|ξ |2k = −|ξ |2kξ · ∇ξ a2 − 2α2|ξ |2k+2a2 + 2 β2 |ξ |2k+2 a�ξ a.

Therefore, integrating over R
N we obtain

d

dt

∫
RN

|ξ |2ka2 dξ = −
∫

RN

|ξ |2kξ · ∇ξ a2 dξ

−2α2
∫

RN

|ξ |2k+2a2 dξ + 2 β2
∫

RN

|ξ |2k+2 a �ξ a dξ. (5.24)

Direct computations, integrating by parts produce∫
RN

|ξ |2kξ · ∇ξ a2 dξ = −(N + 2 k)
∫

RN

|ξ |2ka2 dξ,

and∫
RN

|ξ |2k+2a�ξ a dξ = (k + 1)(N + 2k)
∫

RN

|ξ |2ka2 dξ−
∫

RN

|ξ |2k+2
(∇ξ a

)2
dξ.

Hence (5.24) is written as

d

dt

∫
RN

|ξ |2ka2 dξ = (N + 2 k)
[
1 + 2β2(k + 1)

] ∫
RN

|ξ |2ka2 dξ

− 2α2
∫

RN

|ξ |2k+2a2 dξ − 2β2
∫

RN

|ξ |2k+2
(∇ξ a

)2
dξ. (5.25)
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Since | f̂ |2 = a2 + b2, we obtain

d

dt

∫
RN

|ξ |2k | f̂ |2 dξ = (N + 2 k)
[
1 + 2β2(k + 1)

] ∫
RN

|ξ |2k | f̂ |2 dξ

− 2α2
∫

RN

|ξ |2k+2| f̂ |2 dξ − 2β2
∫

RN

|ξ |2k+2
[(∇ξ a

)2 + (∇ξ b
)2

]
dξ (5.26)

The next step is to find suitable lower bounds for the two negative terms in (5.26).
It is almost clear that the bounds we will derive in what follows are not new, and
one can find them in the literature. Due to the simplicity of the proofs, however,
we will present them in some detail. We have

Lemma 5.1. Let f ∈ L1(RN ) be a probability density function such that, for
some k > 0 ∫

RN

|ξ |2k+2[(∇ξ a)2 + (∇ξ b)2] dξ < ∞. (5.27)

Then,
∫ |ξ |2k | f̂ (ξ )|2 is bounded, and the following inequality holds∫
RN

|ξ |2k | f̂ (ξ )|2 dξ ≤ 4

(N + 2k)2

∫
RN

|ξ |2k+2[(∇ξ a)2 + (∇ξ b)2] dξ.

(5.28)

Proof: Let λ be a positive constant. Then

0 ≤
∫

RN

|ξ |2k

∣∣∣∣λ ξ

|ξ |a(ξ ) + |ξ |∇a(ξ )

∣∣∣∣
2

dξ = λ2
∫

RN

|ξ |2ka2(ξ ) dξ

+
∫

RN

|ξ |2k+2|∇a(ξ )|2 dξ + 2λ

∫
RN

|ξ |2ka(ξ )ξ · ∇a(ξ ) dξ. (5.29)

The last integral into (5.29) can be integrated by parts to give

2λ

∫
RN

|ξ |2ka(ξ )ξ∇a(ξ ) dξ = λ

∫
RN

|ξ |2kξ · ∇a2(ξ ) dξ

= −λ(N + 2k)
∫

RN

|ξ |2ka2(ξ ) dξ.

Substituting into (5.29) gives∫
RN

|ξ |2k+2|∇a(ξ )|2 dξ ≥ λ(N + 2k)
∫

RN

|ξ |2ka2(ξ ) dξ − λ2
∫

RN

|ξ |2ka2(ξ ) dξ.

(5.30)
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Choosing λ = (N + 2k)/2 into (5.30) proves inequality (5.28).

Let us introduce, for r ≥ 0, the Sobolev space norms ‖ · ‖Hr (RN ) by

‖ f ‖2
Hr (RN ) =

∫
RN

|ξ |2r | f̂ (ξ )|2 dξ.

Using inequality (5.28) into inequality (5.26), we can rewrite it as

d

dt
‖ f ‖2

H k (RN ) ≤ D‖ f ‖2
H k (RN ) − 2α2‖ f ‖2

H k+1(RN ), (5.31)

where the constant D holds

D = D(N , k, β) = (N + 2 k)
(
1 + 2β2(k + 1)

) − β2 (N + 2k)2

2
. (5.32)

From the differential inequality (5.31) we deduce the uniform boundedness
of ‖ f ‖H k (RN ). The result follows by the following Nash-type inequality.

Lemma 5.2. Let f ∈ L1(RN ) be a probability density function such that, for
some q > 0 ∫

RN

|ξ |q | f̂ (ξ )|2 dξ < ∞.

Then, if 0 < p < q,
∫ |ξ |p| f̂ (ξ )|2 is bounded, and the following inequality holds

∫
RN

|ξ |p| f̂ (ξ )|2 dξ ≤ C(p, q, N )

(∫
RN

|ξ |q | f̂ (ξ )|2 dξ,

)d(p,q,N )

(5.33)

where, denoting by |BN | the measure of the unit ball in R
N ,

C(p, q, N ) = |BN | q−p
N+q

(
q − p

p + N

) p+N
q+N q + N

q − p
,

and

d(p, q, N ) = p + N

q + N
< 1.

Proof: Since f is a probability density, | f̂ | ≤ 1. Therefore, for any constant R > 0
the following bound holds,∫

RN

|ξ |p| f̂ (ξ )|2 dξ ≤ R p
∫

|ξ |≤R
| f̂ |2 dξ + R p−q

∫
|ξ |>R

|ξ |q | f̂ |2 dξ

≤ R p

∫
|ξ |≤R

dξ + R p−q

∫
|ξ |>R

|ξ |q | f̂ |2 dξ
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≤ RN+p|BN | + R p−q

∫
RN

|ξ |q | f̂ |2 dξ (5.34)

Optimizing in R we obtain the result.

We can use Lemma 5.2 to obtain a bound in (5.31). To this aim, considering
p = 2k and q = 2k + 2

d

dt
‖ f ‖2

H k (RN ) ≤ D‖ f ‖2
H k (RN )−2α2C(2k, 2k+2, N )−1/d(2k,2k+2,N )‖ f ‖2/d(2k,2k+2,N )

H k (RN )

≤ D‖ f ‖2
H k (RN )

(
1 − 2

α2

D C1/d
‖ f ‖2(1−d)/d

H k (RN )

)
.

Since d < 1, the time derivative can growth only if the right-hand side remains
positive, that is when

‖ f ‖2(1−d)/d
H k (RN ) ≤ D C1/d

2α2
.

Clearly this implies a uniform bound on ‖ f ‖2
H k (RN ). We proved

Theorem 5.5. Let f0 be the initial datum for Eq. (2.1) such that ‖ f0‖H k (RN ) finite.
Then, any probability density solution f (t, v) of (2.1) is bounded in H k(RN ), and
there is a universal constant D so that, for all t > 0,

‖ f (t)‖H k (RN ) ≤ max
{‖ f0‖H k (RN ), B

}
,

where

B =
(

DC1/d

2 α2

) d
2(1−d)

.

C(2k, 2k + 2, N ) and d(2k, 2k + 2, N ) are defined as in Lemma 5.2, while the
constant D is defined in (5.32).

5.2. Strong Convergence to Equilibrium

This section is very short. The regularity result proven in the previous section
can be used together with Theorem 4.2 to obtain rates of convergence to equi-
librium in stronger norms. We only need to collect results and to explain how
to compute the constants involved in it. The key point are some interpolation
inequalities, recently considered in Ref. 5 to obtain strong convergence results for
the elastic Boltzmann equation for Maxwell molecules. These inequalities have
been subsequently been used for obtaining sharp rates of convergence to equilib-
rium for the dissipative Boltzmann equation in presence of a thermal bath. (2) The
first of these inequalities reads
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Lemma 5.4. [Control of the H k-distance] Let k, p ≥ 0, then

‖ f − g‖2
H k (RN ) ≤ C d2( f, g)β1‖ f − g‖β2

H k+p(RN ),

with

β1 = 4p

2k + 2p + N + 4
,

β2 = 2(2k + N + 4)

2k + 2p + N + 4
,

C(k, p, N ) =
(

BN

2k + N + 4

) β1
2

(2p)
β2
2 +

(
2p (2k + N + 4)

BN

) −β1
2

Proof: For R > 0 we obtain

‖ f − g‖2
H k (RN ) ≤

∫
|ξ |≤R

|ξ |2k | f̂ − ĝ|2 dξ + 1

R2p

∫
|ξ |>R

|ξ |2(k+p)| f̂ − ĝ|2 dξ

≤
∫

|ξ |≤R
|ξ |2(k+2)d2

2 ( f, g) dξ + 1

R2p
‖ f − g‖2

H k+p

and optimizing on R we obtain the result.
This result shows that the weak d2 distance coupled with ‖ · ‖Hr smoothness,

controls the H k distance for r sufficiently larger than k. The next inequality shows
that control of the sufficiently many moments and control of the L2 norm together,
control the L1 norm.

Lemma 5.5. [Control of the L1-distance(5) (Theorem 4.2)] Let f be an inte-
grable function on R

N . Then, for all r > 0∫
RN

| f (v)| dv ≤ C(N , r )

(∫
RN

| f (v)|2 dv

)
2r/(N+4r )

(∫
RN

|v|2r | f (v)|dv

)
N/(N+4r )

with

C(N , r ) =
[(

N

4r

)4r/(N+4r )

+
(

4r

N

)N/(N+4r )
]

|B N |2r/(N+4r ).

Using both Theorem 5.5 and 5.4 with r = 2, we prove

Theorem 5.6. Let f0 be any initial datum for the Fokker-Planck Eq. ((2.1))
satisfying conditions ((1.10)). Suppose in addition that the conditions of Theorem
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(4.2) are satisfied, so that there exists a positive constant λ such that for some
δ > 0 there is convergence of the solution f (v, t) in d2+δ-norm towards the steady
state f∞(v) at the exponential rate λ . Let ε > 0 be given. Then, there is a number
r depending only on ε so that whenever∫

RN

|v|2 f0(v) dv +
∫

RN

|k|2r
∣∣∣ f̂0(k)

∣∣∣2
dk < ∞

then it holds that

‖ f (·, t) − f∞‖L1(RN ) ≤ Cε exp {−(1 − ε)λt} . (5.35)

Cε is explicitly computable in terms of the integrals specified above. Moreover,
increasing r , we obtain the same result if the L1-norm is replaced by any H m-norm.

Proof: The result follows from the uniform propagation of regularity shown
in Theorem 5.3, and from the interpolation inequalities, Lemmas 5.4 and 5.5
above.

6. CONCLUSIONS

We discussed in this paper the approach to equilibrium for various Fokker-
Planck equations with variable coefficient of diffusion. These equations separate
in a distinctive way from other Fokker-Planck equations with variable coefficients
for the reason that they are obtained by linearizing scaled fast diffusion equations.
We investigated the approach to equilibrium by using suitable kinetic models of
the Boltzmann equation corresponding to nonconservative collision interactions.
These interactions are in fact such that the energy is produced by binary collisions.
This allows to use for the reckoning of rates of decay Fourier-based metrics which
are easy to handle in this kinetic framework. From one side, this seems artificial,
since one has to use nonlinear kinetic equations to obtain results on a linear
equation. Looking however to previous attempts to the solution of this problem,
an approach based on the nonlinear diffusion equation has been used in Ref. 8
to obtain Poincaré inequalities for the linearized fast diffusion equation. Maybe
some new approach has to be dealt with, to treat in full generality the problem of
convergence to equilibrium for these Fokker-Planck equations.
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